Properties

Label 400.212.2.b1.b1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:Q_8$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 3 & 4 & 3 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right), \left(\begin{array}{rrr} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 4 \end{array}\right), \left(\begin{array}{rrr} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 4 & 2 \\ 0 & 4 & 0 \\ 4 & 4 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2\times C_5^2:Q_8$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2:\Unitary(2,3)$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_5^2:\Unitary(2,3)$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$\operatorname{res}(S)$$C_5^2:\Unitary(2,3)$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_5^2:Q_8$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_5^2:Q_8$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_5^2:Q_8$
Maximal under-subgroups:$C_5:F_5$$C_5:F_5$$C_5:F_5$$Q_8$
Autjugate subgroups:400.212.2.b1.a1400.212.2.b1.c1400.212.2.b1.d1

Other information

Möbius function$-1$
Projective image$C_2\times C_5^2:Q_8$