Properties

Label 400.103.80.a1.e1
Order $ 5 $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(5\)
Generators: $b^{2}c^{16}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_5^2:D_8$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5:D_8$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $D_{10}.C_2^4$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_5:D_5).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8000\)\(\medspace = 2^{6} \cdot 5^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$D_4\times C_5^2$
Normalizer:$C_5^2:D_8$
Complements:$C_5:D_8$ $C_5:D_8$ $C_5:D_8$ $C_5:D_8$ $C_5:D_8$
Minimal over-subgroups:$C_5^2$$C_{10}$$C_{10}$$D_5$
Maximal under-subgroups:$C_1$
Autjugate subgroups:400.103.80.a1.a1400.103.80.a1.b1400.103.80.a1.c1400.103.80.a1.d1400.103.80.a1.f1

Other information

Möbius function$0$
Projective image$C_5^2:D_8$