Properties

Label 3996.e.12.b1.b1
Order $ 3^{2} \cdot 37 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{37}:C_9$
Order: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(333\)\(\medspace = 3^{2} \cdot 37 \)
Generators: $a^{4}b, a^{12}b^{9}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{111}:C_{36}$
Order: \(3996\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 37 \)
Exponent: \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{111}.C_{18}.C_2^3$
$\operatorname{Aut}(H)$ $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(S)$$F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{37}:C_9$, of order \(333\)\(\medspace = 3^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{111}:C_{36}$
Complements:$C_{12}$ $C_{12}$ $C_{12}$
Minimal over-subgroups:$C_{111}:C_9$$C_{37}:C_{18}$
Maximal under-subgroups:$C_{37}:C_3$$C_9$
Autjugate subgroups:3996.e.12.b1.a13996.e.12.b1.c1

Other information

Möbius function$0$
Projective image$C_{111}:C_{36}$