Properties

Label 399300.d.7260.d1
Order $ 5 \cdot 11 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{55}$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Index: \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $d^{22}, cd^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}^2\times C_{110}$
Normalizer:$C_{11}^3:C_{10}^2$
Normal closure:$C_{11}\times C_{55}$
Core:$C_5$
Minimal over-subgroups:$C_{11}\times C_{55}$$C_{11}\times C_{55}$$C_{11}\times C_{55}$$C_{55}:C_5$$C_{110}$$C_5\times D_{11}$
Maximal under-subgroups:$C_{11}$$C_5$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{11}^3:(S_3\times C_{10})$