Properties

Label 399300.d.60.b1
Order $ 5 \cdot 11^{3} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_5$
Order: \(6655\)\(\medspace = 5 \cdot 11^{3} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{2}, cd^{50}, d^{10}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $S_3\times C_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^3.C_{10}.\PSL(3,11)$
$W$$C_{11}^3:(C_5\times S_3)$, of order \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}\wr C_3:C_{10}^2$
Complements:$S_3\times C_{10}$ $S_3\times C_{10}$
Minimal over-subgroups:$C_{11}^3:C_5^2$$C_{11}^3:C_{15}$$C_{11}^3:C_{10}$$C_{11}^3:C_{10}$
Maximal under-subgroups:$C_{11}^3$$C_{11}^2:C_5$$C_{11}^2:C_5$$C_{11}^2:C_5$$C_{11}^2:C_5$$C_{11}^2:C_5$$C_{11}^2:C_5$$C_{11}^2:C_5$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function$6$
Projective image$C_{11}\wr C_3:C_{10}^2$