Subgroup ($H$) information
| Description: | $C_{11}$ |
| Order: | \(11\) |
| Index: | \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(11\) |
| Generators: |
$b^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_{11}\wr C_3:C_{10}^2$ |
| Order: | \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_{11}^2:(D_6\times C_5^2)$ |
| Order: | \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $C_{11}^2.C_{15}.C_{10}.C_2^4$ |
| Outer Automorphisms: | $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^3.C_{15}.C_{10}^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| $W$ | $C_5$, of order \(5\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $3630$ |
| Projective image | $C_{11}\wr C_3:C_{10}^2$ |