Properties

Label 399300.d.22.a1
Order $ 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{11}^2:C_{30}$
Order: \(18150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $d^{55}, d^{10}, a^{2}, d^{22}, b^{22}, cd^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_{10}.C_2^3$
$W$$C_{11}^2:(C_5\times S_3)$, of order \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_6\times C_5^2)$
Normal closure:$C_5\times C_{11}^3:C_{30}$
Core:$C_{11}^2:C_{30}$
Minimal over-subgroups:$C_5\times C_{11}^3:C_{30}$$C_{11}^2:(D_6\times C_5^2)$
Maximal under-subgroups:$C_5\times C_{11}^2:C_{15}$$C_5\times C_{11}^2:C_{10}$$C_{11}^2:C_{30}$$C_{11}^2:C_{30}$$C_5\times C_{30}$

Other information

Number of subgroups in this autjugacy class$11$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}^3:(C_5\times S_3)$