Properties

Label 399300.d.18150.j1
Order $ 2 \cdot 11 $
Index $ 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(18150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}d^{55}, b^{3}c^{10}d^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_{22}\times C_{110}$
Normalizer:$C_{11}^2:C_{10}^2$
Normal closure:$C_{11}^3:D_6$
Core:$C_1$
Minimal over-subgroups:$C_{11}\times C_{22}$$C_{11}\times D_{11}$$C_{110}$$C_{11}:C_{10}$$C_2\times C_{22}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of subgroups in this autjugacy class$660$
Number of conjugacy classes in this autjugacy class$20$
Möbius function$0$
Projective image$C_{11}\wr C_3:C_{10}^2$