Properties

Label 3993.6.363.c1.i1
Order $ 11 $
Index $ 3 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(363\)\(\medspace = 3 \cdot 11^{2} \)
Exponent: \(11\)
Generators: $a^{3}bc^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{11}\wr C_3$
Order: \(3993\)\(\medspace = 3 \cdot 11^{3} \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{60}.C_5.C_2^3$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(S)$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(242\)\(\medspace = 2 \cdot 11^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}^3$
Normalizer:$C_{11}^3$
Normal closure:$C_{11}^3$
Core:$C_1$
Minimal over-subgroups:$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:3993.6.363.c1.a13993.6.363.c1.b13993.6.363.c1.c13993.6.363.c1.d13993.6.363.c1.e13993.6.363.c1.f13993.6.363.c1.g13993.6.363.c1.h13993.6.363.c1.j13993.6.363.c1.k13993.6.363.c1.l13993.6.363.c1.m13993.6.363.c1.n13993.6.363.c1.o13993.6.363.c1.p13993.6.363.c1.q13993.6.363.c1.r13993.6.363.c1.s13993.6.363.c1.t13993.6.363.c1.u13993.6.363.c1.v13993.6.363.c1.w13993.6.363.c1.x13993.6.363.c1.y13993.6.363.c1.z13993.6.363.c1.ba13993.6.363.c1.bb13993.6.363.c1.bc13993.6.363.c1.bd13993.6.363.c1.be13993.6.363.c1.bf13993.6.363.c1.bg13993.6.363.c1.bh13993.6.363.c1.bi13993.6.363.c1.bj13993.6.363.c1.bk13993.6.363.c1.bl13993.6.363.c1.bm13993.6.363.c1.bn1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_{11}\wr C_3$