Properties

Label 396312.a.21.b1
Order $ 2^{3} \cdot 7 \cdot 337 $
Index $ 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{337}:C_{56}$
Order: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Generators: $b^{7}, a^{24}b, a^{21}, a^{84}, a^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{2359}:C_{168}$
Order: \(396312\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \cdot 337 \)
Exponent: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Automorphism Group: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2359}.C_{21}.C_{24}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{337}$, of order \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
$W$$C_{337}:C_{84}$, of order \(28308\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_{2359}:C_{168}$
Complements:$C_{21}$ $C_{21}$
Minimal over-subgroups:$C_{2359}:C_{56}$$C_{337}:C_{168}$
Maximal under-subgroups:$C_{337}:C_{28}$$C_{337}:C_8$$C_{56}$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$7$
Möbius function$1$
Projective image$C_{2359}:C_{84}$