Properties

Label 3960.o.660.c1.a1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(12,14,13), (1,3)(4,5)(8,10)(9,11)(12,13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $S_3\times \PSL(2,11)$
Order: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\times S_3$
Normalizer:$S_3\times D_6$
Normal closure:$C_3\times \PSL(2,11)$
Core:$C_3$
Minimal over-subgroups:$C_3\times D_5$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$D_6$$D_6$$C_2\times C_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function$18$
Projective image$S_3\times \PSL(2,11)$