Subgroup ($H$) information
| Description: | $C_{11}:C_{15}$ |
| Order: | \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \) |
| Generators: |
$\langle(1,8,6,9,3,10,7,2,11,4,5)(12,14,13), (12,14,13), (1,2,3,5,4)(6,9,8,10,11)(12,13,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.
Ambient group ($G$) information
| Description: | $S_3\times \PSL(2,11)$ |
| Order: | \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, an A-group, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| $\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\operatorname{res}(S)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
| $W$ | $C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $12$ |
| Möbius function | $1$ |
| Projective image | $S_3\times \PSL(2,11)$ |