Properties

Label 3960.o.24.a1.a1
Order $ 3 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{15}$
Order: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Generators: $\langle(1,8,6,9,3,10,7,2,11,4,5)(12,14,13), (12,14,13), (1,2,3,5,4)(6,9,8,10,11)(12,13,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $S_3\times \PSL(2,11)$
Order: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{33}:C_{10}$
Normal closure:$C_3\times \PSL(2,11)$
Core:$C_3$
Minimal over-subgroups:$C_3\times \PSL(2,11)$$C_{33}:C_{10}$
Maximal under-subgroups:$C_{11}:C_5$$C_{33}$$C_{15}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$1$
Projective image$S_3\times \PSL(2,11)$