Properties

Label 39402.n.2189.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 11 \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(2189\)\(\medspace = 11 \cdot 199 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{99}, a^{110}, a^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{199}:C_{198}$
Order: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_2\times C_{990})$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{198}$
Normalizer:$C_{198}$
Normal closure:$C_{199}:C_{18}$
Core:$C_2$
Minimal over-subgroups:$C_{199}:C_{18}$$C_{198}$
Maximal under-subgroups:$C_9$$C_6$

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$1$
Projective image$C_{199}:C_{99}$