Subgroup ($H$) information
Description: | $C_{33}$ |
Order: | \(33\)\(\medspace = 3 \cdot 11 \) |
Index: | \(1194\)\(\medspace = 2 \cdot 3 \cdot 199 \) |
Exponent: | \(33\)\(\medspace = 3 \cdot 11 \) |
Generators: |
$a^{132}, a^{18}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{199}:C_{198}$ |
Order: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Exponent: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{199}:(C_2\times C_{990})$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{198}$ | ||
Normalizer: | $C_{198}$ | ||
Normal closure: | $C_{199}:C_{33}$ | ||
Core: | $C_{11}$ | ||
Minimal over-subgroups: | $C_{199}:C_{33}$ | $C_{99}$ | $C_{66}$ |
Maximal under-subgroups: | $C_{11}$ | $C_3$ |
Other information
Number of subgroups in this conjugacy class | $199$ |
Möbius function | $-1$ |
Projective image | $C_{199}:C_{18}$ |