Properties

Label 39402.n.1194.a1.a1
Order $ 3 \cdot 11 $
Index $ 2 \cdot 3 \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}$
Order: \(33\)\(\medspace = 3 \cdot 11 \)
Index: \(1194\)\(\medspace = 2 \cdot 3 \cdot 199 \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $a^{132}, a^{18}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{199}:C_{198}$
Order: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_2\times C_{990})$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{198}$
Normalizer:$C_{198}$
Normal closure:$C_{199}:C_{33}$
Core:$C_{11}$
Minimal over-subgroups:$C_{199}:C_{33}$$C_{99}$$C_{66}$
Maximal under-subgroups:$C_{11}$$C_3$

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$-1$
Projective image$C_{199}:C_{18}$