Properties

Label 39402.i.13134.a1.a1
Order $ 3 $
Index $ 2 \cdot 3 \cdot 11 \cdot 199 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Exponent: \(3\)
Generators: $a^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{1791}:C_{22}$
Order: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_{199}:C_{66}$
Order: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Exponent: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Automorphism Group: $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{199}$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{1791}:C_{22}$
Normalizer:$C_{1791}:C_{22}$
Minimal over-subgroups:$C_{597}$$C_{33}$$C_9$$C_6$
Maximal under-subgroups:$C_1$

Other information

Möbius function$199$
Projective image$C_{199}:C_{66}$