Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \) |
Exponent: | \(3\) |
Generators: |
$a^{132}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{1791}:C_{22}$ |
Order: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Exponent: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Derived length: | $2$ |
The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Quotient group ($Q$) structure
Description: | $C_{199}:C_{66}$ |
Order: | \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \) |
Exponent: | \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \) |
Automorphism Group: | $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \) |
Outer Automorphisms: | $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6\times F_{199}$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{1791}:C_{22}$ | |||
Normalizer: | $C_{1791}:C_{22}$ | |||
Minimal over-subgroups: | $C_{597}$ | $C_{33}$ | $C_9$ | $C_6$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $199$ |
Projective image | $C_{199}:C_{66}$ |