Properties

Label 393216.cq.6144.B
Order $ 2^{6} $
Index $ 2^{11} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(7,8)(9,10)(11,12)(19,20)(21,22)(23,24), (5,6)(11,12)(17,18)(23,24), (1,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^8.C_2\wr S_4$
Order: \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^8.S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $D_5^3.C_2^2$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
Outer Automorphisms: $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^6.C_6.C_2^4.C_2^4$, of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$W$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^{11}$
Normalizer:$C_2^8.C_2\wr S_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed