Properties

Label 39200.f.980._.B
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 5 \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{20}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a^{70}b^{245}, a^{84}b^{210}, b^{140}, b^{210}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{140}.C_{280}$
Order: \(39200\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_{35}:C_{28}$
Order: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Automorphism Group: $C_2\times C_6\times F_5\times F_7$
Outer Automorphisms: $C_2\times C_6\times C_{12}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(645120\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed