Subgroup ($H$) information
Description: | $D_{70}:C_{10}$ |
Order: | \(1400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 7 \) |
Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rr}
163 & 0 \\
0 & 50
\end{array}\right), \left(\begin{array}{rr}
59 & 0 \\
0 & 181
\end{array}\right), \left(\begin{array}{rr}
81 & 0 \\
0 & 170
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 153
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 49
\end{array}\right), \left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_{140}\wr C_2$ |
Order: | \(39200\)\(\medspace = 2^{5} \cdot 5^{2} \cdot 7^{2} \) |
Exponent: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(645120\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_4\times C_7:(C_2\times C_6\times F_5)$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |