Properties

Label 3920.h.980.a1.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 5 \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(2\)
Generators: $a^{14}b^{105}, b^{70}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_{140}.C_{28}$
Order: \(3920\)\(\medspace = 2^{4} \cdot 5 \cdot 7^{2} \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_{35}:C_{28}$
Order: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Automorphism Group: $C_2\times C_6\times F_5\times F_7$
Outer Automorphisms: $C_2\times C_6\times C_{12}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^6$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}\times C_{140}$
Normalizer:$C_{140}.C_{28}$
Minimal over-subgroups:$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{10}$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_{70}:C_{28}$