Properties

Label 3888.le.972.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(2\)
Generators: $d^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_3^3.D_6^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3^3.S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_3^3\times A_4).C_2^3$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^3.D_6^2$
Normalizer:$C_3^3.D_6^2$
Complements:$C_3^3.S_3^2$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^3.S_3^2$