Properties

Label 3888.jh.9.g1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(12,13), (11,13,12), (10,11)(12,13), (10,13)(11,12), (1,4)(3,8)(5,9)(6,7)(10,11,12,13), (1,9,3)(2,6,7)(4,8,5)(10,11,13), (1,4,2)(3,5,7)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{res}(S)$$C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2:S_3^2$
Normal closure:$C_3^3:S_3\times S_4$
Core:$C_3\times S_4$
Minimal over-subgroups:$C_6^2:S_3^2$
Maximal under-subgroups:$C_3^2\times S_4$$C_6^2:C_6$$C_3^2:S_4$$C_{12}:D_6$$S_3\times S_4$$S_3\times S_4$$C_3:S_3^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$