Subgroup ($H$) information
| Description: | $C_6^2:D_6$ | 
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Index: | \(9\)\(\medspace = 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(12,13), (11,13,12), (10,11)(12,13), (10,13)(11,12), (1,4)(3,8)(5,9)(6,7)(10,11,12,13), (1,9,3)(2,6,7)(4,8,5)(10,11,13), (1,4,2)(3,5,7)(6,9,8)\rangle$ | 
| Derived length: | $3$ | 
The subgroup is nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
| Description: | $C_3^3:S_3\times S_4$ | 
| Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^3$ | 
| $\operatorname{Aut}(H)$ | $S_4\times C_3^2:\GL(2,3)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) | 
| $\operatorname{res}(S)$ | $C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) | 
| $W$ | $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $C_3^3:S_3\times S_4$ | 
