Properties

Label 3888.jh.8.a1.a1
Order $ 2 \cdot 3^{5} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(12,13), (6,8,9), (1,9,5,4,8,7,2,6,3)(11,12,13), (1,4,2)(6,8,9), (11,13,12), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\operatorname{res}(S)$$C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^3:S_3^2$
Normal closure:$C_3\wr C_3\times S_4$
Core:$C_3\wr C_3$
Minimal over-subgroups:$C_3\wr C_3\times S_4$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^4:C_3$$C_3^3:C_6$$S_3\times C_3^3$$S_3\times \He_3$$C_3^3.C_6$$C_3^3.C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_3^3:S_3\times S_4$