Properties

Label 3888.jh.6.j1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6^2:C_6$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,13)(11,12), (6,8,9), (1,4,2)(6,8,9), (2,4)(3,6,7,9,5,8)(10,11,12), (10,11)(12,13), (11,13,12), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times S_4\times \AGL(2,3)$
$\operatorname{res}(S)$$C_3^2:D_6\times S_4$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_6^2:S_3^2$
Normal closure:$A_4\times C_3^3:S_3$
Core:$A_4\times C_3^3$
Minimal over-subgroups:$A_4\times C_3^3:S_3$$C_6^2:S_3^2$
Maximal under-subgroups:$A_4\times C_3^3$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_3^2\wr C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^3:S_3\times S_4$