Properties

Label 3888.jh.54.z1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_3^2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(12,13), (10,13)(11,12), (3,7,5), (1,4,2)(6,8,9), (10,11)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(54\)\(\medspace = 2 \cdot 3^{3} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3^2\times C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$S_4\times C_3^3$
Core:$C_2^2$
Minimal over-subgroups:$D_4\times C_3^3$$C_3^2\times S_4$$C_{12}:D_6$
Maximal under-subgroups:$C_6^2$$C_3\times C_{12}$$C_6^2$$C_3\times D_4$$C_3\times D_4$$C_3\times D_4$
Autjugate subgroups:3888.jh.54.z1.b13888.jh.54.z1.c1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$