Properties

Label 3888.jh.18.k1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{12}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(6,8,9), (10,13,11,12), (1,9,4,6,2,8)(5,7)(12,13), (1,4,2)(6,8,9), (10,11)(12,13), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_6:D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$C_3^3:S_3\times S_4$
Core:$C_3^3$
Minimal over-subgroups:$C_3^3:D_{12}$$C_6^2:D_6$
Maximal under-subgroups:$C_3^2:D_6$$C_3^2:D_6$$C_3^2\times C_{12}$$C_3\times D_{12}$$C_3\times D_{12}$$C_3\times D_{12}$$C_3\times D_{12}$$C_3:D_{12}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$