Properties

Label 3888.fx.108.ds1.d1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, d^{3}, a^{2}e^{2}, bd^{4}e^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $(C_3\times C_6^2):S_3^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6^2$
Normalizer:$C_3:C_6^3$
Normal closure:$C_6\times C_3^3:D_6$
Core:$C_1$
Minimal over-subgroups:$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_6\times D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_2\times C_6$$D_6$
Autjugate subgroups:3888.fx.108.ds1.a13888.fx.108.ds1.b13888.fx.108.ds1.c13888.fx.108.ds1.e13888.fx.108.ds1.f13888.fx.108.ds1.g13888.fx.108.ds1.h13888.fx.108.ds1.i13888.fx.108.ds1.j13888.fx.108.ds1.k13888.fx.108.ds1.l1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$(C_3\times C_6^2):S_3^2$