Properties

Label 3888.fx.108.dk1.e1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, d^{3}, a^{2}e^{4}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $(C_3\times C_6^2):S_3^2$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6^3$
Normalizer:$C_6^3$
Normal closure:$C_6\times C_3^3:D_6$
Core:$C_1$
Minimal over-subgroups:$C_3\times C_6^2$$C_3^2\times D_6$$C_2\times C_6^2$
Maximal under-subgroups:$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$
Autjugate subgroups:3888.fx.108.dk1.a13888.fx.108.dk1.b13888.fx.108.dk1.c13888.fx.108.dk1.d13888.fx.108.dk1.f13888.fx.108.dk1.g13888.fx.108.dk1.h13888.fx.108.dk1.i13888.fx.108.dk1.j13888.fx.108.dk1.k13888.fx.108.dk1.l1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$(C_3\times C_6^2):S_3^2$