Subgroup ($H$) information
Description: | $C_3^4.S_4$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Index: | \(2\) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$a^{3}b^{9}c^{4}, b^{6}, c^{2}, a^{2}d^{3}, d^{2}, d^{3}, c^{3}d^{3}, b^{8}c^{3}d^{3}$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3^3.(C_6\times S_4)$ |
Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $(C_3\times C_6^2).C_3^3.D_6$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_3^3.(C_6\times S_4)$ |