Subgroup ($H$) information
| Description: | $S_3\times A_4$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(4,9)(5,7), (3,6)(5,7)(10,11,12), (5,7)(11,12), (1,8,2)(3,9,5)(4,7,6)(10,12,11), (3,6)(4,9)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^3:(S_3\times S_4)$ |
| Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
| $\operatorname{Aut}(H)$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $27$ |
| Möbius function | $1$ |
| Projective image | $C_3^3:(S_3\times S_4)$ |