Properties

Label 3888.by.54.g1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times A_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,9)(5,7), (3,6)(5,7)(10,11,12), (5,7)(11,12), (1,8,2)(3,9,5)(4,7,6)(10,12,11), (3,6)(4,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:(S_3\times S_4)$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times S_4$
Normal closure:$C_3^3:(S_3\times A_4)$
Core:$C_3$
Minimal over-subgroups:$C_3^3:(S_3\times A_4)$$S_3\times S_4$
Maximal under-subgroups:$C_3\times A_4$$C_2\times A_4$$C_2\times D_6$$C_3\times S_3$

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$1$
Projective image$C_3^3:(S_3\times S_4)$