Subgroup ($H$) information
Description: | $C_3^4:S_4$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Index: | \(2\) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(1,3,6)(2,7,5), (5,7)(8,9), (1,2,3,5)(6,7)(8,9)(10,11), (1,3,6)(2,5,7)(4,9,8) \!\cdots\! \rangle$
|
Derived length: | $4$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3^3:(S_3\times S_4)$ |
Order: | \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
$\operatorname{Aut}(H)$ | $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_3^3:(S_3\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_3^3:(S_3\times S_4)$ |