Properties

Label 3870.a.215.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_9$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, b^{1075}, b^{1290}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_9\times C_{215}$
Order: \(3870\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 43 \)
Exponent: \(3870\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Automorphism Group: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times D_9:C_3$
$\operatorname{Aut}(H)$ $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$D_9$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{215}$
Normalizer:$D_9\times C_{215}$
Complements:$C_{215}$
Minimal over-subgroups:$D_9\times C_{43}$$C_5\times D_9$
Maximal under-subgroups:$C_9$$S_3$

Other information

Möbius function$1$
Projective image$D_9\times C_{215}$