Properties

Label 38612.a.394.a1.a1
Order $ 2 \cdot 7^{2} $
Index $ 2 \cdot 197 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{98}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(394\)\(\medspace = 2 \cdot 197 \)
Exponent: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Generators: $a^{98}, a^{28}, a^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $F_{197}$
Order: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Exponent: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{197}$, of order \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{196}$
Normalizer:$C_{196}$
Normal closure:$C_{197}:C_{98}$
Core:$C_1$
Minimal over-subgroups:$C_{197}:C_{98}$$C_{196}$
Maximal under-subgroups:$C_{49}$$C_{14}$

Other information

Number of subgroups in this conjugacy class$197$
Möbius function$1$
Projective image$F_{197}$