Subgroup ($H$) information
Description: | $C_{28}$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Index: | \(1379\)\(\medspace = 7 \cdot 197 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a^{49}, a^{98}, a^{28}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $F_{197}$ |
Order: | \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \) |
Exponent: | \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \) |
Derived length: | $2$ |
The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{197}$, of order \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{196}$ | |
Normalizer: | $C_{196}$ | |
Normal closure: | $C_{197}:C_{28}$ | |
Core: | $C_1$ | |
Minimal over-subgroups: | $C_{197}:C_{28}$ | $C_{196}$ |
Maximal under-subgroups: | $C_{14}$ | $C_4$ |
Other information
Number of subgroups in this conjugacy class | $197$ |
Möbius function | $1$ |
Projective image | $F_{197}$ |