Properties

Label 3840.gr.2.C
Order $ 2^{7} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4\times S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,5,3)(2,4)(6,15)(7,14)(10,12)(11,13), (1,2)(6,15)(7,14)(8,9)(10,12)(11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $D_4:C_2^2\times S_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3:D_{15}$, of order \(368640\)\(\medspace = 2^{13} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^5.C_2^3.S_5$
$\card{\operatorname{res}(S)}$\(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_4:C_2^2\times S_5$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_4:C_2^2\times S_5$
Maximal under-subgroups:$C_2^3\times S_5$$C_2^3:S_5$$C_2\times D_4\times A_5$$C_2\times C_4\times S_5$$C_2\times C_4:S_5$$D_4\times S_5$$\GL(2,\mathbb{Z}/4):C_2^2$$D_{10}.C_2^4$$C_{12}:C_2^4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^3\times S_5$