Properties

Label 3840.ft.32.B
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times A_4$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(8,9)(14,15), (12,13)(14,15), (6,7)(10,11)(12,13)(14,15), (1,3,5,2,4)(8,12,15)(9,13,14), (1,3,5,2,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2\times \GL(2,\mathbb{Z}/4):F_5$
Minimal over-subgroups:$C_2^3:C_{30}$$C_2^3:C_{30}$$A_4\times D_{10}$$A_4\times D_{10}$$A_4\times D_{10}$$C_{10}\times S_4$$C_{10}:S_4$$A_4:C_{20}$$C_{10}.S_4$
Maximal under-subgroups:$C_5\times A_4$$C_2^2\times C_{10}$$C_{30}$$C_2\times A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$