Properties

Label 3840.ft.24.X
Order $ 2^{5} \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times F_5$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(1,3)(4,5)(6,11)(7,10)(8,9)(12,15)(13,14), (1,4,2,5,3)(6,10)(7,11)(12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $F_5\times C_2^3:\GL(3,2)$, of order \(26880\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$C_2^3\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4\times F_5$
Normal closure:$C_2^2\times F_5\times S_4$
Core:$D_{10}$
Minimal over-subgroups:$C_2^4\times F_5$
Maximal under-subgroups:$C_2^2\times D_{10}$$C_2^2\times F_5$$C_2^2\times F_5$$C_2^2\times F_5$$C_2^2\times F_5$$C_2^2\times F_5$$C_2^2\times F_5$$C_2^3\times C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$\GL(2,\mathbb{Z}/4):F_5$