Properties

Label 3840.ft.192.DC
Order $ 2^{2} \cdot 5 $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_5$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\langle(2,3,5,4)(6,11)(7,10)(14,15), (2,5)(3,4), (1,3,5,2,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times D_4$
Normalizer:$D_{10}.C_2^5$
Normal closure:$C_2^3\times F_5$
Core:$D_5$
Minimal over-subgroups:$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$
Maximal under-subgroups:$D_5$$C_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2\times \GL(2,\mathbb{Z}/4):F_5$