Properties

Label 3840.ft.192.BC
Order $ 2^{2} \cdot 5 $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(6,7)(8,9)(12,13)(14,15), (1,5,4,3,2)(8,9)(10,11)(12,13), (1,3,5,2,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times \GL(2,\mathbb{Z}/4):F_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^4\times C_{10}$
Normalizer:$C_2^5:F_5$
Normal closure:$C_2^4\times C_{10}$
Core:$C_5$
Minimal over-subgroups:$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2\times D_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2\times \GL(2,\mathbb{Z}/4):F_5$