Properties

Label 3840.fe.32.BJ
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_{10}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,5,3,2,4)(6,14)(7,15)(8,9)(10,11), (1,5,3,2,4), (2,3)(4,5)(8,9)(12,13), (1,5)(3,4)(6,7)(10,11)(12,13)(14,15), (1,4,2,3,5)(6,10,15)(7,11,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{15}:C_2^5$
Normal closure:$C_2\times D_{10}\times S_4$
Core:$D_5$
Minimal over-subgroups:$D_{10}\times S_4$$D_6\times D_{10}$$D_6\times D_{10}$
Maximal under-subgroups:$C_3\times D_{10}$$S_3\times C_{10}$$D_{30}$$S_3\times D_5$$S_3\times D_5$$S_3\times D_5$$S_3\times D_5$$C_2\times D_{10}$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$128$
Number of conjugacy classes in this autjugacy class$16$
Möbius function not computed
Projective image$C_2^3:F_5\times S_4$