Properties

Label 3840.et.2.a1.a1
Order $ 2^{7} \cdot 3 \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4\times S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(6,7,9,10)(8,11,13,12), (1,2)(7,10)(8,13), (8,13)(11,12), (7,10)(11,12), (6,9)(7,10)(8,13)(11,12), (1,3)(2,5,4)(6,7,9,10)(8,11,13,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $\OD_{16}:C_2\times S_5$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_4^2.(C_2^2\times S_5)$, of order \(30720\)\(\medspace = 2^{11} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^5.C_2^3.S_5$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4.(D_4\times S_5)$, of order \(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times C_4\times S_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\OD_{16}:C_2\times S_5$
Minimal over-subgroups:$\OD_{16}:C_2\times S_5$
Maximal under-subgroups:$C_2^3\times S_5$$C_2^3\times S_5$$C_2^3:S_5$$C_2^3:S_5$$C_2\times D_4\times A_5$$C_2\times C_4\times S_5$$C_2\times C_4:S_5$$D_4\times S_5$$D_4\times S_5$$D_4\times S_5$$D_4\times S_5$$\GL(2,\mathbb{Z}/4):C_2^2$$D_{10}.C_2^4$$C_{12}:C_2^4$

Other information

Möbius function$-1$
Projective image$C_2^2:C_4\times S_5$