Properties

Label 3840.bf.48.GX
Order $ 2^{4} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 19 & 15 \\ 10 & 19 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2^4.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^3:D_4\times F_5$
Normal closure:$C_{10}\times S_4$
Core:$C_2^2\times C_{10}$
Minimal over-subgroups:$C_{10}\times S_4$$C_{20}:C_2^3$$C_2^4:C_{10}$$D_4\times D_{10}$$D_4\times D_{10}$$D_{10}:D_4$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2\times C_{20}$$C_5\times D_4$$C_5\times D_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_2^2\times F_5\times S_4$