Properties

Label 3840.bf.256.a1
Order $ 3 \cdot 5 $
Index $ 2^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 16 & 5 \\ 15 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{30}$
Normalizer:$C_6:D_4\times F_5$
Normal closure:$C_5\times A_4$
Core:$C_5$
Minimal over-subgroups:$C_5\times A_4$$C_{30}$$C_{30}$$C_{30}$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_5\times S_3$$D_{15}$
Maximal under-subgroups:$C_5$$C_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$