Properties

Label 384.9328.8.o1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 21 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 19 & 12 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 1 & 3 \\ 6 & 19 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $S_3\times C_2^3:D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3.D_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_{12}:C_2^4$
Normal closure:$C_{12}:C_2^3$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{12}:C_2^3$$D_4\times D_6$
Maximal under-subgroups:$C_2\times C_{12}$$C_2^2\times C_6$$C_3\times D_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image not computed