Subgroup ($H$) information
| Description: | $C_2^3:C_4$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
19 & 15 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 3 \\
6 & 19
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $S_3\times C_2^3:D_4$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^8.C_3.D_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \) |
| $\card{W}$ | \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |