Properties

Label 384.6844.8.bh1.b1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:C_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{2}, d^{4}, b, b^{2}d^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4^2).D_6$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_6:C_4^2$
Normal closure:$C_2^2.D_{12}$
Core:$C_6:C_4$
Minimal over-subgroups:$C_2^2.D_{12}$
Maximal under-subgroups:$C_6:C_4$$C_2\times D_6$$C_2\times C_{12}$$C_2^2:C_4$
Autjugate subgroups:384.6844.8.bh1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4:D_6$