Properties

Label 384.5460.12.i1.c1
Order $ 2^{5} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab, c^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{48}:D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{24}$
Normalizer:$C_6\times \OD_{32}$
Normal closure:$C_2\times \OD_{32}$
Core:$C_{16}$
Minimal over-subgroups:$C_3\times \OD_{32}$$C_2\times \OD_{32}$
Maximal under-subgroups:$C_{16}$$C_2\times C_8$$C_{16}$
Autjugate subgroups:384.5460.12.i1.a1384.5460.12.i1.b1384.5460.12.i1.d1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_6\times D_4$