Subgroup ($H$) information
Description: | $C_{12}$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$b^{2}c^{12}, c^{16}, c^{24}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.
Ambient group ($G$) information
Description: | $C_2\times C_4\times C_{48}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Quotient group ($Q$) structure
Description: | $C_2^2\times C_8$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Automorphism Group: | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Outer Automorphisms: | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2.C_2^6.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2048\)\(\medspace = 2^{11} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2\times C_4\times C_{48}$ | ||
Normalizer: | $C_2\times C_4\times C_{48}$ | ||
Minimal over-subgroups: | $C_2\times C_{12}$ | $C_2\times C_{12}$ | $C_{24}$ |
Maximal under-subgroups: | $C_6$ | $C_4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_2^2\times C_8$ |