Properties

Label 384.5396.32.f1
Order $ 2^{2} \cdot 3 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{2}c^{12}, c^{16}, c^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_2\times C_4\times C_{48}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^2\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2.C_2^6.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2048\)\(\medspace = 2^{11} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times C_{48}$
Normalizer:$C_2\times C_4\times C_{48}$
Minimal over-subgroups:$C_2\times C_{12}$$C_2\times C_{12}$$C_{24}$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times C_8$