Properties

Label 384.4899.8.m1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_{12}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac, d^{12}, d^{6}, d^{8}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3\times C_2^4.D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^3$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{Aut}(H)$ $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_3\times C_2^3:Q_8$
Normal closure:$C_{12}.D_4$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{12}.D_4$$C_{12}.D_4$$C_{12}.D_4$
Maximal under-subgroups:$C_2\times C_{12}$$C_2\times C_{12}$$C_2\times C_{12}$$C_4:C_4$
Autjugate subgroups:384.4899.8.m1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^2\wr C_2$