Subgroup ($H$) information
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$ad^{9}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
Description: | $(C_4\times C_{12}).D_4$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_{12}.D_4$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $D_4^2:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2^6.C_2^6)$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\card{W}$ | \(2\) |
Related subgroups
Centralizer: | $C_{12}:\OD_{16}$ | ||
Normalizer: | $(C_4\times C_{12}).D_4$ | ||
Minimal over-subgroups: | $C_{12}$ | $C_2\times C_4$ | $C_2\times C_4$ |
Maximal under-subgroups: | $C_2$ | ||
Autjugate subgroups: | 384.4311.96.c1.b1 |
Other information
Möbius function | not computed |
Projective image | not computed |