Properties

Label 384.4310.4.h1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.Q_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ac^{2}d^{3}, d^{6}, c^{2}, b^{2}, c, d^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_4^2.D_6$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_2^4.C_2^5.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^7:C_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2\times C_{12}.Q_8$
Normal closure:$C_2\times C_{12}.Q_8$
Core:$C_4\times C_{12}$
Minimal over-subgroups:$C_2\times C_{12}.Q_8$
Maximal under-subgroups:$C_4\times C_{12}$$C_4:C_{12}$$C_4:C_{12}$$C_4:C_{12}$$C_4.Q_8$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^3.D_6$